



## Section 002-001 — Foundations of High-Containment Laboratory Design

Instructor: Luis Linares

Course: High-Containment Laboratory Design

### Purpose of the document:

This lecture map is designed to help participants navigate the content of Section 002-001. It identifies the main conceptual sections, key ideas, and logical transitions of the session. It functions as an orientation and study tool and does not replace the lecture.

### Section 1 — Introduction: the laboratory as a living system

Main focus: Establish the foundational idea that a high-containment laboratory is not merely a building, but a living system shaped by design, systems, procedures, and human behavior.

Key points:

- A containment laboratory depends as much on human behavior as on technical systems.
- Physical barriers, equipment, procedures, and safety culture work together as a single system.
- Failure in any one element weakens the entire system.
- The session sets the conceptual foundations for understanding containment as integrated protection.

Rhetorical questions / Attention signals:

- What truly makes a laboratory safe?
- Is safety defined by infrastructure, equipment, or culture?

Orientation signal: Introduces the central question that will accompany the entire course.

## Section 2 – Scope and objectives of the course

Main focus: Clarify the purpose, structure, and pedagogical approach of the course.

Key points:

- The course offers an integrated view of high-containment laboratory design, particularly BSL-3.
- Biological safety principles are translated into design decisions.
- The content is framed within Latin American institutional and operational contexts.
- The course emphasizes not only what to do, but why decisions are made.

Rhetorical questions / Attention signals:

- How do biosafety principles become design choices?
- Why must design adapt to local contexts?

Orientation signal: Aligns participant expectations with the technical and conceptual goals of the course.

## Section 3 – Structure of the course and thematic blocks

Main focus: Present the internal organization of the course and the progression of topics.

Key points:

- The course is divided into two main parts.
- Part 1 addresses historical context, technical foundations, materials, and engineering controls.
- Part 2 addresses human-centered design, regulatory balance, operational continuity, and sustainability.
- Each block builds toward an integrated understanding of containment.

Rhetorical questions / Attention signals:

- Why is containment discussed from history to sustainability?
- How do these topics connect?

Orientation signal: Provides a roadmap for how concepts will accumulate across sessions.

## Section 4 – Historical context and origin of biological containment

Main focus: Explain why biological containment emerged and how it evolved historically.

Key points:

- Early containment laboratories originated in the United States during the 1940s and 1950s.
- Facilities such as Fort Detrick and Plum Island shaped early containment strategies.
- Containment initially served defense programs before shifting to public health and research.

- Epidemic outbreaks reinforced the need for safer laboratories.

Rhetorical questions / Attention signals:

- Why were the first containment laboratories created?
- How did historical events shape today's laboratories?

Orientation signal: Connects present-day containment design to its historical roots.

## Section 5 – From technical systems to integrated protection

Main focus: Reinforce containment as an integrated system rather than a collection of technical components.

Key points:

- Containment is not achieved through a single system or device.
- Design decisions span materials, spatial organization, and personnel training.
- All decisions align with a guiding principle of comprehensive protection.
- Protection extends to people, animals, the environment, and research integrity.

Rhetorical questions / Attention signals:

- Can equipment alone ensure containment?
- How do design and training interact?

Orientation signal: Transitions from historical context to systemic thinking.

## Section 6 – Planning as the foundation of containment

Main focus: Introduce planning as the most critical factor in laboratory safety and performance.

Key points:

- Laboratory planning defines access control and spatial hierarchy.
- The “box-in-a-box” concept isolates the laboratory from external environments.
- Planning supports both energy efficiency and biosafety.
- Design must anticipate operational needs and risks.

Rhetorical questions / Attention signals:

- Why must containment be planned before technical design?
- What happens when planning is insufficient?

Orientation signal: Positions planning as the basis for all subsequent decisions.

## Section 7 – Influence of SOPs on design and containment

Main focus: Explain how Standard Operating Procedures directly shape laboratory design.

Key points:

- SOPs determine primary containment measures such as biosafety cabinets.
- Workflows influence spatial layout and equipment placement.
- Aerosol-generating activities require specific containment strategies.
- SOPs guide personal protective equipment requirements.

Rhetorical questions / Attention signals:

- How does work practice influence spatial design?
- Can SOPs be separated from architecture?

Orientation signal: Links operational behavior to physical design requirements.

## Section 8 – Secondary barriers, airflow, and pressure zoning

Main focus: Describe how SOPs influence secondary containment systems.

Key points:

- Pressure differentials organize clean, less clean, and potentially contaminated zones.
- Personnel and material flows must align with negative pressure zoning.
- HVAC systems respond to procedural needs.
- Airflow direction reflects biological risk.

Rhetorical questions / Attention signals:

- What happens when airflow contradicts workflow?
- How does zoning protect containment?

Orientation signal: Bridges procedures with mechanical systems.

## Section 9 – Decontamination and waste management as design drivers

Main focus: Present decontamination requirements as determinants of laboratory design.

Key points:

- SOPs may require autoclaving or chemical disinfection before material exit.
- Design may include pass-through autoclaves and effluent treatment systems.
- Whole-room decontamination requires hermetic sealing and injection ports.
- Finishes must resist chemical exposure.

Rhetorical questions / Attention signals:

- What design changes are required by VHP decontamination?
- Why must hermeticity be planned early?

Orientation signal: Shows how operational requirements fix physical design decisions.

## Section 10 – Hermeticity and verification of containment

Main focus: Explain the importance of laboratory airtightness and its verification.

Key points:

- Hermetic laboratories are safer and more energy efficient.
- Airtightness stabilizes pressure differentials and airflow.
- Laboratories must be isolated from atmospheric pressure fluctuations.
- Pressure decay testing verifies containment performance.

Rhetorical questions / Attention signals:

- How do we know a laboratory is truly airtight?
- Why is verification as important as design?

Orientation signal: Introduces validation as a measurable requirement.

## Section 11 – Sustainability and energy considerations

Main focus: Address sustainability within the constraints of high-containment laboratories.

Key points:

- BSL-3 laboratories renew 100% of air and cannot rely on recirculation.
- Energy efficiency is possible when addressed through planning and design.
- Containment integrity must always take precedence.
- Sustainability begins with airtightness and system optimization.

Rhetorical questions / Attention signals:

- Can a high-containment laboratory be sustainable?
- Where do efficiency gains come from?

Orientation signal: Prepares the transition from fundamentals to advanced system design.

## Section 12 – Closing reflection: containment as shared responsibility

Main focus: Conclude the session by reinforcing containment as a shared technical and human responsibility.

Key points:

- Safety emerges from the interaction of systems, people, and culture.
- Design decisions carry long-term consequences.
- Containment is maintained through continuous attention and discipline.
- The guiding question remains central throughout the course.

Rhetorical questions / Attention signals:

- Who is responsible for containment over time?
- How do decisions made today affect future safety?

Orientation signal: Closes the session by reinforcing the foundational principles that support all subsequent lectures.